20 May 2013

Examples in SPSS and SAS for oil palm fertilizer experimental design and analysis - Part A


This webpage contains data that were obtained in Example 2 described in pages 267-269 in the publication Oil Palm: Management for Large and Sustainable Yields.
(Example 4, described in pages 271 of the book will be discussed in
Part B)

A1 Experimental results (t FFB ha-1)

The results from the experiment were as follows:


N level (kg N palm-1)
0
1
2
3
Rep 1
27
29
32
26
Rep 2
26
31
30
27
Rep 3
25
27
28
28

A2 Data file for SPSS and SAS

The contents of the data file (contained in a *.dat format) is given below showing (from left to right) the plot number (plotnr), applied level of N (n), and yield (yield).

Plot number (plotnr)
Applied level of N (n)
Yield
1
0
27
2
0
26
3
0
25
4
1
29
5
1
31
6
1
27
7
2
32
8
2
30
9
2
28
10
3
26
11
3
27
12
3
28

A3 Command file for analysis with SPSS

The SPSS command file (*.sps) contains the following programme for SPSS under Windows (these commands can also be given by clicking in the menu):


COMPUTE n1 = n.
EXECUTE.
COMPUTE n2 = n*n .
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI BCOV R ANOVA
/CRITERIA=PIN(.05) POUT(.10) CIN(95)
/NOORIGIN
/DEPENDENT yield
/METHOD=ENTER n1 n2
/SAVE PRED SEPRED MCIN RESID .

A4 Programme output for analysis with SPSS


Regression







A5 Command file for analysis with SAS

The corresponding SAS command file (*.sas) contains the following code, where the data file is called: "quadr_ex.dat":


data;
infile 'c:\quadr_ex.dat';
input plotnr n yield;
n1 = n .
n2 = n * n;
run;
proc print;
run;
proc reg;
model yield= n1 n2 /p i clm ;
run;

A6 Programme output for analysis with SAS

The SAS System 23:00 Wednesday, July 9, 2003 1


OBS PLOTNR N YIELD N1 N2

1 1 0 27 0 0
2 2 0 26 0 0
3 3 0 25 0 0
4 4 1 29 1 1
5 5 1 31 1 1
6 6 1 27 1 1
7 7 2 32 2 4
8 8 2 30 2 4
9 9 2 28 2 4
10 10 3 26 3 9
11 11 3 27 3 9
12 12 3 28 3 9

The SAS System 23:00 Wednesday, July 9, 2003 2

Model: MODEL1


X'X Inverse, Parameter Estimates, and SSE

INTERCEP N1 N2 YIELD

INTERCEP 0.3166666667 -0.35 0.0833333333 25.9
N1 -0.35 0.8166666667 -0.25 4.9
N2 0.0833333333 -0.25 0.0833333333 -1.5
YIELD 25.9 4.9 -1.5 20.6


The SAS System 23:00 Wednesday, July 9, 2003 3

Dependent Variable: YIELD

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 29.40000 14.70000 6.422 0.0185
Error 9 20.60000 2.28889
C Total 11 50.00000

Root MSE 1.51291 R-square 0.5880
Dep Mean 28.00000 Adj R-sq 0.4964
C.V. 5.40324

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 25.900000 0.85136057 30.422 0.0001
N1 1 4.900000 1.36720856 3.584 0.0059
N2 1 -1.500000 0.43673876 -3.435 0.0075


Dep Var Predict Std Err Lower95% Upper95%
Obs YIELD Value Predict Mean Mean Residual

1 27.0000 25.9000 0.851 23.9741 27.8259 1.1000
2 26.0000 25.9000 0.851 23.9741 27.8259 0.1000
3 25.0000 25.9000 0.851 23.9741 27.8259 -0.9000
4 29.0000 29.3000 0.648 27.8346 30.7654 -0.3000
5 31.0000 29.3000 0.648 27.8346 30.7654 1.7000
6 27.0000 29.3000 0.648 27.8346 30.7654 -2.3000
7 32.0000 29.7000 0.648 28.2346 31.1654 2.3000
8 30.0000 29.7000 0.648 28.2346 31.1654 0.3000
9 28.0000 29.7000 0.648 28.2346 31.1654 -1.7000
10 26.0000 27.1000 0.851 25.1741 29.0259 -1.1000
11 27.0000 27.1000 0.851 25.1741 29.0259 -0.1000
12 28.0000 27.1000 0.851 25.1741 29.0259 0.9000

Sum of Residuals 0
Sum of Squared Residuals 20.6000
Predicted Resid SS (Press) 33.4945

The illustration for Example 4 from the book is discussed in Part B.

Source: The information on these pages were kindly provided by Dr Rob Verdooren, Statistical Advisor of Numico-Research B.V. For further information on the statistical aspects of the experiments, please email Dr Verdooren directly.


More about: Best Management Practices