INCREASING PALM OIL YIELDS BY MEASURING OIL RECOVERY EFFICIENCY FROM THE FIELDS TO THE MILLS

James Cock, Chris R Donough, Thomas Oberthür, K Indrasuara, Rahmadsyah, Gatot A R, T Dolong
CPO yield components

• Yield of FFB produced in the field.
• FFBs harvested and delivered to mill
• Oil content of FFBs plus loose fruits delivered to the mill.
• Extraction efficiency of the mill.
Primary and Final Product

• Primary Product is Fresh Fruit Bunches
• Most important Final Product is Crude Palm Oil (CPO)
Oil Yield and FFB Yield

• 6 t CPO ha$^{-1}$ can be obtained from:
 – 30.0 t ha$^{-1}$ FFB at 20% oil extraction or
 – 26.1 t ha$^{-1}$ FFB at 23% oil extraction
Primary and Final Products and Costs

- Oil palm mills pay producers essentially for the Primary Product, not for a measured content of Final Product.
- Costs of harvest, transport and initial processing proportional to the mass of the Primary Product.
- Higher ratios of Final Product to Primary Product (i.e., higher oil content) result in lower costs of harvest, transport and initial processing costs per unit Final Product.
Importance of Oil Content

<table>
<thead>
<tr>
<th>Extraction rate (%)</th>
<th>t FFB per t CPO</th>
<th>Cost of FFB per t FFB at mill</th>
<th>Cost of t CPO in FFB</th>
<th>Cost per t CPO primary process</th>
<th>Cost per t CPO of FFB + Primary Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>5.56</td>
<td>474 *</td>
<td>2633</td>
<td>167</td>
<td>2800</td>
</tr>
<tr>
<td>20</td>
<td>5.00</td>
<td>522</td>
<td>2610</td>
<td>150</td>
<td>2760</td>
</tr>
<tr>
<td>22</td>
<td>4.54</td>
<td>514</td>
<td>2336</td>
<td>136</td>
<td>2473</td>
</tr>
</tbody>
</table>

Malaysian Ringit
Costs quoted 14th June 2014 MYR, * Grade C
Cost of primary processing per t FFB 30 MYR
Massive variation in Oil Content

\[y = 0.0056 \ln(x) + 0.2567 \]
\[R^2 = 0.0203 \]
Major questions

• How may we increase the oil content of the bunches?
• How can we ensure the oil produced in the field reaches the mill?
• How can mills increase the efficiency of extraction?
Basic Principle: What you don’t measure you cannot manage.

- Sugar mills and cassava (tapioca) starch factories routinely measure:
 - the amount of final product arriving at the mills and pay accordingly
 - the efficiency of extraction of the final product so that they can monitor efficiency of mill operations.

- In oil palm loose fruits are used to determine quality.

- With current methods it is impossible to carry out a mass balance of oil in the mill processing.
How could we manage to increase oil content and reduce oil losses

• Managing increased oil content:
 – Selection of high oil content populations and management for high oil content
 – Harvest bunches when oil content is high

• Extracting all the oil produced in the field
 – Harvest all bunches
 – Harvest ripe bunches
 – Transport and process bunches rapidly
 – Increase extraction efficiency in mill
 • Higher extraction efficiency with higher oil content.
 • Processing efficiency
Critical Measurements

• **Field Oil Recovery Efficiency (FORE)**
 – The oil delivered to the mill as a percentage of the total oil produced in the field if all the bunches were at optimal maturity and there were no loose fruit losses.

• **Estimated Potential Oil Extraction Rate (EOER\textsubscript{p})**
 – The weight of oil in the bunches as a percentage of the overall FFB weight delivered to the mill.

• **Mill Oil Recovery Efficiency (MORE).**
 – The weight of the oil extracted as a percentage of the weight of oil delivered to the mill in the bunches.
Specific data needed

- \(\text{BNO}_{\text{NH}} \), Bunch number not harvested
- \(\text{BNO} \), Bunch number
- \(\text{ELF}_B \), Number of loose fruits per bunch
- \(\text{LFW}_{\text{AV}} \), Average loose fruit weight
- \(\text{FFB}_R \), Weight of FFB at the weighbridge
- \(\text{PFFB}_{\text{IM}} \), percentage unripe fruit bunches
- \(\text{EOC}_M \), Estimated Oil Content of mature FFB
- \(\text{EOC}_\text{LF} \), Estimated Oil Content of loose fruit
- \(\text{EOC}_{\text{IM}} \), Oil content of immature or unripe FFB
- \(\text{TOO} \), Total oil output

Colour code: Standard measurement, harvest audit, Bunch Analysis, estimated
Currently standard measures

- FFB_R, Weight of FFB at the weighbridge
- BNO, Bunch number
- PFFB_{IM}, Percentage of unripe fruits obtained from the evaluation on delivery at the mill*
- TOO total oil output

*Note: Unripe fruits also obtained from harvest audits, but mill estimates always lower.
Can be measured by Harvest Audits

- ELF_B, Number of loose fruits per bunch
- BNO_{NH}, Bunch number not harvested
 - Colombian flagging system is interesting
- PFFB_{IM}, Percentage of unripe fruits
Can be estimated by Bunch Analysis

- \(\text{LFW}_{AV} \), Average loose fruit weight
- \(\text{EOC}_M \), Estimated Oil Content of mature FFB
- \(\text{EOC}_{LF} \), Estimated Oil Content of loose fruit
- \(\text{EOC}_{IM} \), Oil content of immature or unripe FFB taken as a percentage of \(\text{EOC}_M \)
Bunch Analysis

• Has been known for a long time but is not widely used on a routine basis.

• Attempts to develop new methods
 – Nurul Aslah I. 2010. *Quick determination of actual oil content in oil palm fruit bunch using near infra red (NIR) scanning spectrometer.* Universiti Malaysia Pahang
Alternatives to Bunch Analysis

- Near Infrared Reflectance (NIR) accurately determines the composition of many biological products.
- NIR systems are initially expensive and need careful calibration.
- Operational costs once calibrated are low and results are obtained extremely rapidly.
Alternatives to Bunch Analysis

• Cane sugar mills often use a core sampler to take a representative sample of all cane arriving at the mill in wagons. The sample is then ground or milled and read directly by Near Infrared Reflectance.

• Could a similar system be developed for oil palm that would determine Estimated Potential Oil Extraction Rate (EOER$_p$) for all batches entering mills?
Core Sampler
Consequences of routine EOER\textsubscript{p} Measurement

- Mills pay for the true oil in FFB.
- Growers have incentive to improve oil content.
- Growers obtain feedback on quality of FFB and use this to improve quality.
- Transparent evaluation.
 - Growers and mills trust each other.
- Milling Overall Recovery Efficiency used to improve processes.
Harvest Audits

Harvest audits, coupled with the accurate determination of EOER_p, would allow growers to:

– Determine losses due to missing FFBs at harvest
– Use the information obtained from the analysis to determine harvest protocols that maximize oil content and at the same time minimize losses.
Conclusion

• Improved monitoring will:
 – Reduce friction between growers and mills
 – Provide incentives for growers to improve the quality of FFB
 – Provide insights to growers on how to improve FFB quality and reduce losses in the field.
 – Allow mills to obtain better quality FFB.
 – Allow mills to measure extraction efficiency and hence improve extraction processes