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A B S T R A C T

Bayesian networks were used to predict yield functions from three commercial oil palm estates. The networks
were trained using a range of environmental, agronomic and management data routinely collected during
plantation management. The Bayesian networks predicted fruit yield (FFB), average weight of fruit bunches
(ABW) and average bunch number per hectare (BUNCH_HA). Comparing the predictions of most probable yield
against observed data showed the Bayesian networks were highly accurate, with r2 values between 0.6 and 0.9.
Predictions for attaining specific yield targets exceeded 75% accuracy for the FFB, 85% for the BUNCH_HA, and
90% for the ABW function. Supplementary analysis compared the precision of the Bayesian networks with
artificial neural networks (ANNs), and demonstrated that the Bayesian networks gave equivalent or superior
accuracy for every test. The utility of the networks were demonstrated by predicting the probability of achieving
above average yield functions for each block across the three estates using a set of hypothetical rainfall and
fertiliser input scenarios during the year prior to harvest. For the majority of blocks, the probability of exceeding
the yield target depended on the level of fertiliser and rainfall inputs received, indicating that production from
these blocks is greatly influenced by prior rainfall and fertilizer. However, some blocks in favourable areas
showed a very high probability of exceeding the mean yields at all rainfall and fertiliser inputs, while a number
of other blocks showed a consistently low probability of achieving the same productivity; production from these
blocks will be resistant to the effects of historic rainfall and fertiliser inputs. The ability of Bayesian networks to
represent future yield expectations will greatly assist managers under pressure to improve the economic and
environmental sustainability of plantations. The demonstration that machine learning can extract important
insight from complex datasets will have broad application in the analysis of big data collected from oil palm as
well as other agricultural industries.

1. Introduction

The global oil palm industry has grown rapidly over recently, with
production increasing from 17.64 million tonnes in 1996/97 up to
69.77 million tonnes in 2016/17 (USDA, 2018). However, the oil palm
industry is facing mounting environmental, economic and political
pressures which endanger future sustainability (Carlson et al., 2013).
The industry’s on-going resilience and profitability will depend on the
ability of estate managers to make strategic and process orientated
adaptations to management (Cook et al., 2014).

Plantation managers are under intense pressure to make rapid

management decisions about many issues, from personnel to strategy;
from area to input. Decisions are frequently made under duress and
based on intuition, which often gives a sub-optimal outcome.
Furthermore, managers might attach false confidence to their intuition,
leading to impulsive decisions that are untested against data. The po-
tential and cumulative risks are grave.

Decision support systems can assist managers by summarising data
driven analysis and providing objective and rational perspectives of
complex production systems. For example, PALMSIM is a computer
simulation model that has been developed for oil palm (Hoffmann et al.,
2014). However, yield predictions from this model are based solely
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upon current solar radiation, water availability and tree age, and so are
unable to represent the variation relating to environmental or man-
agement parameters. The development of a comprehensive computer
model for oil palm presents many challenges. First, parameter quanti-
fication is costly and time consuming. Second, it can be difficult to
generalise between contrasting geographic and environmental loca-
tions. Third, the output is typically a simple single predicted yield
arising from specified environmental and management variables.

Recently, “big data” has become an increasingly common paradigm
across many domains, including agricultural research (Kamilaris et al.,
2017). Big data typically represents extremely large data collections
characterised by the 5 Vs: Volume, Velocity, Variety, Veracity and
Valorisation (Chi et al., 2016; Kamilaris et al., 2017), which describe
the quantity of data; the time window over which the data is relevant;
the diversity of data types and sources; the quality, accuracy and re-
liability of the data; and the ability to propagate knowledge and in-
novation.

Efficient exploitation of the emerging agricultural big data resources
has been estimated to offer an annual global benefit of up to $20 billion,
yet, despite this potential, analysis of big data in agriculture has lagged
behind other industries (Kamilaris and Preafeta-Boldu, 2018). The raw
data itself presents little if any economic value, but must first be
transformed into high-value knowledge and wisdom using appropriate
analytical tools aligned with the Data-Information-Knowledge-Wisdom
hierarchy (Rowley, 2007; Lokers et al., 2018) which can in turn be used
to construct actionable management (Antle et al., 2017; Morota et al.,
2018).

Traditional experimental paradigms and statistical methods are not
well adapted to the analysis of agricultural big data (Coble et al., 2018).
Fishers’s statistical methods and associated experimental designs are
predicated on taking a small sample from a large population, whereas
big data will often include very large samples and might at times in-
clude the entire population. Furthermore, big data is often associated
with high levels of noise, heterogeneity, spurious correlations and in-
cidental endogeneity.

Machine learning presents alternative options for the analysis of big
data (Coble et al., 2018). Such algorithms mimic human intelligence by
first learning to recognise structures and patterns within sometimes
complex datasets and then to use the acquired model, which is akin to
human experience, to make predictions about future events. A major
advantage of machine learning algorithms for the analysis of big data is
that they do not rely on applying user specified models to the data, but
instead discern their own rules for the system being scrutinised.

The analysis of agricultural big data using machine learning is be-
coming increasingly common and recent examples include the predic-
tion of crop type from satellite data, crop yields, irrigation require-
ments, pest and disease attacks, and weed identification (Pantazi et al.,
2016; Kussul et al., 2017; Kamilaris and Preafeta-Boldu, 2018).

Commonly used machine learning tools include Bayesian networks
and artificial neural networks (ANNs). A Bayesian network is a machine
learning tool that utilises a directed acyclic graph and probability dis-
tributions to define and quantify the stochastic dependencies between
variables (Pearl, 1988; Koller and Friedman, 2009). Commonly, Baye-
sian networks can be used to learn a model which describes a complex
system. The derived model can act as a substitute for expert human
knowledge, and can be used to infer the value of an unknown variable
from a given set of known variables (Friedman and Koller, 2003).

In contrast, ANNS are inspired by the physiology of the brain
(Haykin, 2007), and use a network of interconnected artificial in silico
neurones that learn to recognize patterns and relationships among input
data, and then use the resulting data model to predict outcomes from
new and previously unprocessed input data.

The oil palm industry has embraced the big data paradigm for many
years, with estates routinely measuring an enormous array of en-
vironmental, agronomic and ecophysiological parameters (Oberthür
et al., 2015). The data bank stored by estates presents a valuable yet

largely untapped resource to support the development of sustainable
palm oil management strategies.

Oil palm research has developed various machine learning tools to
assist the industry including, for example, genomic selection on plant
breeding programs (Kwong et al., 2017), the identification of yield
recording errors (Pushparani et al., 2018), and fruit ripeness (Bensaeed
et al., 2014). Despite these applications of machine learning, and de-
spite the availability of plantation level big data resources, the potential
for machine learning resources to predict oil palm yields from com-
mercial big data collections has yet to be explored.

Bayesian networks have great potential for the analysis of big data
collected from commercial oil palm estates because: (1) Bayesian net-
works can integrate both categorical and continuous data, so optimising
the full data set (Scutari, 2010); (2) the constructed network shows
dependencies between parameters that both validate the learnt network
by cross-referencing with pre-existing expert knowledge, or construct
new hypothesis through the detection of undiscovered relationships
between parameters; (3) Bayesian networks can handle incomplete
datasets efficiently (Bressan et al., 2009) and most significantly; (4) the
output from a Bayesian network is the level of probability or “belief”
that an outcome will occur; managers could easily comprehend and
implement probability framed predictions into their estate manage-
ment. The probability orientated output from Bayesian networks is
feature that may be particularly important to support learning pro-
cesses of estate managers (Tenenbaum, 1999).

In this study, we explore how Bayesian networks can be trained
from data sets collected through routine management from commercial
oil palm estates, and compared their performance against results from
ANNs trained on the same data. A subsequent proof-concept-study
predicted yield functions from a range of simple hypothetical situations
to demonstrate how trained Bayesian networks could assist estate
managers formally represent expectations of future estate productivity
under contrasting scenarios.

Table 1
Summary of parameters used in the three Bayesian networks.

Parameter name Description

FFB Fresh fruit yield in year of harvest (t·ha−1)
FFB.1 Fresh fruit yield in the year prior to the year of harvest

(t·ha−1)
FFB.2 Fresh fruit yield in the year two years prior to the harvest

(t·ha−1)
ABW Average weight of fruit bunches in the year of harvest (kg)
ABW.1 Average weight of fruit bunches in the year prior to the year

of harvest (kg)
ABW.2 Average weight of fruit bunches in the year two years prior

to the harvest (kg)
ESTATE Identity of the estate from which the data is collected
RAINFALL Total rainfall in the year of harvest (mm)
RAINFALL.1 Total rainfall in the year prior to the year of harvest (mm)
RAINFALL.2 Total rainfall two years prior to the year of harvest (mm)
SUM_NPKMg_IN Total fertiliser application in the year of harvest (kg·ha−1)
SUM_NPKMg_IN.1 Total fertiliser application in the year prior to the year of

harvest (kg·ha−1)
SUM_NPKMg_IN.2 Total fertiliser application in the year two years prior to the

harvest (kg·ha−1)
SMG Soil management group: classes A, B, C, D and F
TREEAGE Age of tree in the year of harvest (years)
BUNCH_HA Density of bunches in the year of harvest (bunches·ha−1)
BUNCH_HA.1 Density of bunches in the year prior to the year of harvest

(bunches·ha−1)
BUNCH_HA.2 Density of bunches in the year two years prior to the harvest

(bunches·ha−1)
N.17.1 Mean foliar nitrogen content in the 17th frond in the year

prior to harvest (% dry matter)
K.17.1 Mean foliar potassium content in the 17th frond in the year

prior to harvest (% dry matter)
P.17.1 Mean foliar phosphorous content in the 17th frond in the

year prior to harvest (% dry matter)
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2. Materials and methods

2.1. Data resources

Data for this study were collected from three commercial estates
located in Kalimantan, Indonesia. The study area included some 447
individual blocks with a total area planted to palm of about 19809 ha.

Both spatial (topography maps in the form of digital elevation models,
soil maps) and non-spatial data (basic site information, daily rainfall
and soil survey data) were provided by the estates at the start of the
study. The soil survey of the estates was conducted in June 2007.
Rainfall data were collected for the period 2004–2015. The fresh fruit
bunch (FFB) yield and management data were collected from 2007 till
2015.

Data was manually filtered post collection to remove poor quality
observations (Cook et al., 2014) and to restrict the dataset to mature
trees only.

2.2. Bayesian network learning

The logic and algorithms underlying the construction of Bayesian
networks have been well discussed elsewhere (Bressan et al., 2009;
Nagarajan et al., 2013; and Pearl, 1988), but will be reviewed briefly
here. The first stage in learning a Bayesian network is to deploy an
algorithm which learns the structure of the network by inferring causal
relationships between variables within a dataset, and to plot these re-
lationships in a directed acyclic graph comprising nodes connected by
arcs. Within each inferred relationship, the independent variable is
termed the parent node, while the dependent variable is termed the
child node. The second stage in learning a Bayesian network is to fit
parameters to the arcs. The value of the parent node is used to compute
the probability density for the child node.

Once the network has been constructed, a subset of nodes with
known values can be used to infer the value of a single unobserved
target node. The parents of the target node affect its value through their
direct conditional dependency. The child nodes are conditionally de-
pendent upon the target node. This dependency can be reversed to infer
a value to the target. The child nodes can be affected by one or more
alternative parents, so the value of these alternative parents must also
be considered when inferring the value of the target from a child node.

Table 2
Summary of the five soil (SMG) classes occurring across the estates.

SMG class Soil depth Fertility status Drainage, flooding and moisture
status

Soil texture Dominant slope
classes

Comment

A Moderate to deep Low to moderate Well drained, moisture stress Sandy clay 2–3 Phosphorus fixing
B Deep Low to moderate Well drained Sandy clay/sandy clay

loam
1–2 Soil erosion risk

C Deep Low to moderate Flooding and imperfect to
poorly drained

Sandy clay/sandy clay
loam

D Shallow to
moderate

Very low Prone to flooding and moisture
stress

Sandy soils with cement
layer

2–3 Cement layer with poor rooting and
anchorage

F Shallow to
moderate

Low Very poorly drained Organic soils

Table 3
The number of blocks retained for data processing after filtering for tree age and
poor quality data as absolute counts and proportions of the total block numbers.

2011 2012 2013 2014 2015

Blocks available after filtering poor quality
data

68 256 293 272 379

Proportion (%) of total block number 15.26 57.2 65.5 60.8 84.7

Table 4
Annual rainfall data (mm) for each estates (2009 to 2015, NA – no data were
available).

2009 2010 2011 2012 2013 2014 2015

Estate 1 2400 4188 2169 2482 2989 2687 2096
Estate 2 NA 3203 2297 2132 2388 1882 1380
Estate 3 NA 3669 1912 2324 2467 2370 2073

Table 5
Mean and standard deviation of total annual fertiliser applications (kg·ha−1) for
each estate.

Estate 1 Estate 2 Estate 3

Mean 498 489 467
Standard deviation 108 64 56

Table 6
Summary of the number of blocks of each tree age used in each Bayesian net-
work.

Tree age (years) 6 7 8 9 10 11 12 13 14 15

Number of blocks 54 143 197 247 228 212 112 46 27 2

Table 7
Summary of the mean, maximum, minimum and standard deviation for the continuous variables derived from blocks used in the three networks (FFB fresh fruit
bunches, ABW average bunch weight, BUNCH_HA bunches per hectare, foliar N, foliar P, foliar K).

FFB (t·ha−1) ABW (kg) BUNCH_HA (bunches·ha−1) Foliar N content (%) in frond 17 Foliar P content (%) in frond 17 Foliar K content (%) in frond 17

Mean 25.1 14.7 1791 2.6 0.158 0.936
Max 44.1 23.6 5263 3.2 0.262 1.46
Min 8.0 4.9 509 1.9 0.106 0.16
SD 4.6 3.7 464 0.23 0.016 0.159

Table 8
Summary of the representation of five SMG classes across the three estates.

SMG class A B C D F

Estate 1 46 116 171 83 8
Estate 2 24 154 309 0 0
Estate 3 4 76 242 30 3
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The suite of nodes that influence the target node (the parents,
children and alternative parents of the children) are termed the Markov
Blanket for the target node, and the Markov Blanket represents the sum
of knowledge required to predict the value of that target node. The
inclusion of multiple and parallel influences on the target node typically
allow for accurate predictions even from noisy data.

A Bayesian network which represented the conditional

dependencies between the variables in each dataset was constructed
using the bnlearn package constructed for the R software environment
(Scutari, 2010). As learning a Bayesian network is computationally
complex, or NP-hard, the heuristic “hill-climbing” algorithm was used
to learn the network structure by efficiently searching for an approx-
imate rather than perfect solution (Gamez et al., 2010; Scutari, 2017).
The network parameters were computed using the maximum like-
lihoods method as this method can parameterize both continuous and
discrete data (Nagarajan et al., 2013).

The objective of the networks was to predict the future performance
of three yield functions; total yield of fresh fruit bunches in each block
(FFB), the average weight of harvested bunches (ABW), and the total
bunch number per hectare (BUNCH_HA) based on past and current
management and environmental records along with past records of
yield functions. The networks therefore included management and en-
vironmental data from across a three year window, including the year
of harvest year and the two years immediately prior. Restricting the
window to three years suppressed the influence of very young trees
with unusually low productivity from the networks.

The range of parameters used across three networks are described in
Table 1. As the three key yield functions (FFB, ABW, BUNCH_HA) are
recorded simultaneously at harvest, it is impossible to know one yield
function value in advance of any other. It is therefore meaningless to
utilise any yield function variables from the year of harvest to make
predictions regarding other yield functions. Thus, all yield function data
from the year of harvest other than the target function were excluded
from each network. For example, a network trained to predict FFB
excluded measurements of ABW and BUNCH_HA from the harvest year.
The resulting networks were deployed to predictions for the FFB,

a b 

c

Fig. 1. The Markov blankets for (a) the FFB; (b) the ABW; and (c) the BUNCH_HA nodes extracted from the network trained for each of these yield functions (FFB
fresh fruit bunches, ABW average bunch weight, BUNCH_HA bunches per hectare).

Table 9
The mean (standard deviation) frequency with which the Bayesian networks
assigned a block to the correct yield class using threshold values of mean, 25th
percentile, and 75th percentile of FFB, ABW and BUNCH_HA within each test
dataset.

25th percentile
yield threshold

Mean yield
threshold

75th percentile
yield threshold

FFB network 85.6 (3.7) 78.3 (3.7) 79.0 (3.4)
ABW network 94.9 (3.2) 94.9 (2.2) 92.4 (1.9)
BUNCH_HA

network
89.1 (2.3) 85.6 (2.8) 89.0 (2.2)

Table 10
Comparison of the mean r-squared (standard deviation) from Bayesian network
and ANNs for 3 yield functions.

Yield function Bayesian network ANN

FFB 0.6 (0.051) 0.6 (0.141)
ABW 0.9 (0.011) 0.9 (0.022)
BUNCH_HA 0.8 (0.027) 0.5 (0.269)
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BUNCH_HA, and ABW yield functions for a given set of environmental,
management and agronomic parameters.

The accuracy of each network was tested using ten-fold cross-vali-
dation (10-FOLD CV) (Lever et al., 2016). The 10-FOLD CV method
involves repeatedly dividing the dataset into two subsets, the first
subset is used to train a network. The second dataset is then fed into the
network to make predictions of yield based on the values of all other
variables. The accuracy of the network was described by comparing
predicted yield functions with observations within the test dataset. In
this study, the 10-FOLD CV was performed ten times, on each occasion
the test dataset was composed of a unique random selection of 10% of
the total data. The accuracy of the Bayesian networks was assessed by
(1) determining the precision with which the network predicted that
yield functions would exceed three thresholds (25%, mean, or 75% of
the observed yield function values) and; (2) comparing the most
probable yield value (argmax) against actual yield values using linear
regression.

2.3. Comparison with an artificial neural network

The Bayesian Network’s learning efficiency was compared with re-
sults generated from an ANN. The ANNs were created using the neur-
alnet R package (Günther and Fritsch, 2010). ANNs were trained for
each yield function, with data transformed so that each SMG was re-
presented by an integer (A= 1, B=2, C=3, D=4, F=5), and all
variables re-scaled to a range between 0 and 1. The ANNs were of a
multilayer perceptron architecture, with 2 hidden layers of eight and
three nodes, and one single output variable. ANN learning used the
resilient backpropagation algorithm which gives robust but rapid
learning outcomes (Riedmiller and Braun, 1993; Schmidhuber, 2015).
Output from every node was a sigma function, except for the final node
which produced a linear output.

2.4. Application

We demonstrated utility of Bayesian networks to support manage-
ment decisions by computing expectation that each block would
achieve a specified yield given prior rainfall and fertilizer inputs. The
targets selected were equivalent to the mean of all values observed for
2015 (27.16 t·ha−1 FFB; 16.93 kg ABW; 1639 bunches·ha−1), given a
range of hypothetical conditions. For each network, we selected dif-
ferent rainfall levels in the preceding year (RAINFALL.1). Fertiliser
from the year prior to harvest (SUM_NPKMg_IN.1) was also included for
those networks where it was included in the Markov Blanket for the
yield function. The selected conditions spanned all observed rainfall
and fertiliser inputs, set at intervals of 10% of the total observed range.
All other conditions were as recorded for each block during 2015. The
outcome was summarised as the proportion of blocks across that are
predicted to exceed the target threshold for each set of conditions.

3. Results

3.1. Data description

The experimental area included 5 distinct soil management groups
(SMGs) representing a range of soil depth, fertility, textural classes,
drainage and moisture status, and topographies (Table 2).

The numbers of blocks retained after filtering for immature trees
and poor quality data generally increased over the period used for this
study (Table 3), mainly because the number of blocks of sufficient
maturity increased over time. The low number of blocks filtered out
during 2015 reflects the generally high quality of data collected from
mature, productive blocks.

Total annual rainfall (mm) data over the years for which data was
used for this study is summarised in Table 4. Rainfall data from each
block included historical data from the two previous years, meaning
that rainfall data was collected over a longer time frame than the block
data (Table 3).

The median annual fertiliser applications made to each estate were
very similar, although estate 1 had a slightly higher diversity of ap-
plication rates (Table 5).

The age of trees used to learn and develop the networks spanned
from 6 to 15 years (Table 6).

Crop yield and nutrition variables were highly variable from across
the data used in this study (Table 7), with FFB and ABW showing an
approximate 5 fold differences between the highest and lowest ob-
served values, and BUNCH_HA showing a 10-fold difference.

There were five different SMG classes; one of these (C) were more
common in estate 2 and estate 3, whereas classes A, D and especially F
were more common in estate 1 (Table 8).

3.2. Learning Bayesian networks

The Bayesian networks constructed for the FFB, ABW, and

Fig. 2. The percentage of blocks predicted to exceed (a) mean FFB yield
(t·ha−1); (b) mean ABW weight (kg); and (c) BUNCH_HA (bunches·ha−1) in
2015 following hypothetical rainfall levels, and also fertiliser inputs and for FFB
and ABW variables in the previous year.
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BUNCH_HA data are presented in Fig. 1. The Markov blanket associated
with the FFB node included 11 other variables. Six variables were
parents of the FFB node (ESTATE, FFB.1, FFB.2, RAINFALL, RAINF-
ALL.1, RAINFALL.2), indicating a direct relationship with FFB variable;
and two nodes were included as children (SUM_NPKMg_IN.1 and
TREEAGE), indicating that their influence will be modulated by their
alternative parents.

Comparing the predicted and actual classification of yield against 3
thresholds showed that the FFB network was highly accurate, assigning
predicted FFB to the correct class in over 75% with all target threshold
levels (Table 9). The most probable argmax yield for FFB showed a good
correlation with observed yields (Table 10), indicating that the main
drivers of FFB had been well captured.

The Bayesian network for the ABW data (Fig. 1) was more complex,
including a Markov blanket of 16 nodes. The ABW node had three
parent nodes (ESTATE, SUM_NPKMg_IN, and N.17.1) and ten child
nodes (TREEAGE, BUNCH_HA.2, ABW.1, ABW.2, FFB.1, FFB.2, RAIN-
FALL, RAINFALL.1, RAINFALL.2 and SUM_NPKMg_IN.1). The ABW
network was very highly accurate, assigning predicted ABW to the
correct class in approximately 90% of instances (Table 9), and the ABW
argmax was very highly correlated with observed data (Table 10), again
indicating a very high level of precision.

The network for the BUNCH_HA data (Fig. 1) consisted of 6 parents
for the BUNCH_HA node (ESTATE, BUNCH_HA.1, ABW.1, FFB.1, FFB.2,
and SUM_NPKMg_IN) along with 6 child nodes (RAINFALL, RAINF-
ALL.1, RAINFALL.2, ABW.2, BUNCH_HA.2, K.17.1). The network pre-
dicted yield class accurately in close to 90% of instances (Table 9) and
showed a strong correlation between argmax and observed data
(Table 10).

Comparing the accuracy of Bayesian networks and ANNs shows that
both methods gave extremely high precision for the ABW function
(Table 10). ANN gave similar but somewhat reduced precision for FFB.
The Bayesian network also returned very good precision for
BUNCH_HA, but the ANN’s output for that function was the least ac-
curate of all predictions

The various parameters that quantified the relationships between
the FFB, BUNCH_HA and ABW nodes on the three networks are sum-
marised in (Appendix Tables A1–A3).

3.3. Bayesian network application

The utility of Bayesian networks in supporting management deci-
sions is demonstrated by computing the probability that each block will
exceed a target FFB, ABW or BUNCH_HA given a range of hypothetical
conditions in the year preceding harvest. We predicted FFB and ABW
from RAINFALL.1 and SUM_NPKMg_IN.1. However, as the BUNCH_HA
network did not include SUM_NPKMg_IN.1, predictions were derived
solely from hypothetical RAINFALL.1 values (Fig. 2).

All three variables showed a clear positive response to increasing
RAINFALL.1, and FFB and ABW showed the greatest response at the
lowest fertiliser rates. However, historic rainfall inputs brought di-
minishing returns, with little benefit observed above 2804mm (FFB and
BUNCH_HA) or above 3496mm (ABW), where most blocks already
showed a high probability of exceeding yield targets.

Some blocks showed a low probability of exceeding the target
threshold at even the highest inputs in the preceding year, including
eight blocks in the FFB, 110 in the ABW, and 17 in the BUNCH_HA
networks. Similarly, other blocks showed a high likelihood of exceeding
the target threshold at even the lowest historic input levels, including 2
blocks in the FFB network, 164 blocks in the ABW network, and 77
blocks in the BUNCH_HA network. Collectively, these results indicate
that, whilst production from most blocks show substantial response to
historic rainfall and/or fertiliser inputs, some blocks are insensitive to

such variation.

4. Discussion

4.1. Bayesian networks and management support

As external pressures on the oil palm industry increase, the future
sustainability of the industry depends on the ability of managers to
make informed adaptations to management process. Vital to the sup-
port of process change will be the provision of decision support tools to
free manager’s judgement from intuition based errors and biases.

The analysis performed in this study demonstrate that Bayesian
networks can be used to successfully predict yield functions from
commercial oil palm estates using data collected as routine estate
management practice. The networks created will compliment and ex-
tend the predictions made possible with PALSIM simulation model
(Hoffmann et al., 2014) in that they utilise a greater diversity of input
data, including current and historic management factors, soil type and
past rainfall. As such, the Bayesian networks will better predict the
impact of climate as well as the effect of differences in management
factors and soil conditions, both within and between estates, on pro-
duction. Furthermore, the Bayesian networks will have two major ad-
vantages over the development of novel modelling approaches. First,
Bayesian networks utilise pre-existing data, and so do not require any
costly field experimentation to compute relationships between input
parameters and yield (Hoffmann et al., 2014). Second, they are based
on empirical observations obtained directly from the sites of interest, so
avoid the problems with extrapolating observations across different
geographic locations (Hoffmann et al., 2014). The information gener-
ated by the networks can guide a manager’s expectations of yield out-
comes from across a range of contrasting environmental and agronomic
conditions. This information is complementary to benchmarking with
PALMSIM-generated estimate of annual ceiling yields, a tool which
describes the potential yield ceiling based solely on sunlight and water
(Hoffmann et al., 2015), by providing managers with insight to the
agronomic or ecophysiological factors underlying any gap between
actual potential yield in any year.

All networks predicted yield with high levels of accuracy with both
the yield threshold and argmax’s most probable yield value, indicating
that the networks capture the key relations between input variables and
yield functions. The ABW and BUNCH_HA networks both returned a
higher level of precision than the FFB. The reduced accuracy of the FFB
may be due in part to errors in data recording, which is performed at
the receiving mill, and is subjected to numerous sources of inaccuracy,
including variable efficiencies in crop harvesting; weight loss between
harvest and mill-processing; and human or technical errors at the point
of weighing. The development of techniques to reduce the impact of
data inaccuracies within the FFB data set presents a challenge for future
research. A likely first step will be to identify and remove poor quality
FFB data points during training and testing.

Comparing the precision of the two learners reveals that the
Bayesian networks compare well against the ANNs, with the Bayesian
methods equalling or exceeding the ANN’s accuracies for all measures.
The reason for Bayesian network’s superior performance in this study is
not clear, but similar findings have been reported elsewhere (e.g.
Correa et al., 2009).

4.2. Relationships between factors within the Bayesian networks

Examining the parameters included in the FFB, ABW and
BUNCH_HA networks gives an indication of the factors underlying these
yield functions. All networks included rainfall from the current and past
years, indicating that annual rainfall influences production in both
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current season and subsequent years (Cock et al., 2016). All networks
included historic fresh fruit yields and bunch weight (FFB.1, FFB.2,
ABW.1 and ABW.2), demonstrating that past productivity is an in-
dicator of future yield. SUM_NPKMg_IN was also present within each
network indicating that fertiliser applied during the year of harvest
impacted yield functions. The inclusion of the TREEAGE variable in all
networks demonstrates that tree maturity also affects yield (Corley and
Tinker, 2015; and Mahamooth et al., 2011). The three estates in-
corporated into this study can be distinguished by a range of geographic
and environmental factors, many of which are described by other
variables in the networks, including annual rainfall levels and soil SMG
class. However, the inclusion of the ESTATE variable indicates that
other unknown and possibly management related estate-associated
factors influence productivity; such factors are worthy of future re-
search.

The inclusion of SUM_NPKMg_IN.1 as a child of the target node in
the FFB and ABW networks indicates that the influence of fertiliser
applied in the year prior to harvest is modulated by other factors, in-
cluding the level of fertiliser applied in the year of harvest and rainfall
levels two years earlier.

The critical function of TREEAGE in determining yield is demon-
strated by its role as a child node of both FFB and ABW yield functions.
Furthermore, its observed role as an alternative parent on
SUM_NPKMg_IN.1 (FFB network) demonstrates that tree age impacts
the fertiliser response. Similarly, the historic bunch weight (ABW.2)
also moderates historical fertiliser effects (SUM_NPKMg_IN.1) in the
same network; this apparent relationship between historic variables
would benefit from further scrutiny.

The inclusion of historic fertiliser variables in each network de-
monstrates that prior conditions influence yield functions; similar re-
lationships have been previously reported by Goh and Härdter (2003).
The ABW and BUNCH_HA networks also included two leaf foliar nu-
trition measurements from the year prior to harvest (N.17.1 and
K.17.1), confirming again the role of past crop nutrition on current
yield.

The networks demonstrate that past bunch numbers affect the ABW
and BUNCH_HA functions, but the negative relationship between
BUNCH_HA.2 and ABW reiterates the previously reported inverse re-
lationship between these parameters (Corley and Tinker, 2015).

4.3. Applications of the Bayesian networks to hypothetical rainfall and
fertiliser conditions

The utility of the Bayesian networks was demonstrated by pre-
dicting the probabilities that blocks would exceed target FFB, ABW or
BUNCH_HA thresholds for a given range of fertiliser and rainfall inputs
during the years preceding the harvest.

4.3.1. Rainfall conditions
All yield functions showed a clear positive response to rainfall in the

year prior to harvest. However, increasing rainfall brought a dimin-
ishing response from each function. For example, the BUNCH_HA’s re-
sponse approached a maximum at 2804mm where approximately 90%
of blocks were already exceeding the threshold. Similarly, more than of
2574mm brought little benefits to the FFB function, and the ABW’s
response diminished above 3496mm. Similar relationships have been
discussed previously by Corley and Tinker (2015).

4.3.2. Fertiliser inputs
Both FFB and ABW yield functions responded positively to fertiliser

applications in the year prior to harvest. The fertiliser’s predicted po-
sitive response at low rainfall suggests that nutrient management may
be used to offset the negative impacts of water deficits.

The diminishing response to fertiliser at high rainfall indicates that
most blocks will give above average yield following wet years, even
with low prior fertiliser. We do not have an explanation for this, al-
though possible explanations include biological stimulation rising from
high growth in previous wet years, or low yield taken in the previous
years due to flood related crop losses.

The response to fertiliser from both the FFB and ABW functions
declined with increasing rainfall with an asymptote being approached
at 2574mm for the FFB network, and 3496mm for the ABW network.
At these rainfall levels, most blocks are likely to exceed the target yield
at the lowest SUM_NPKMg_IN.1 levels, so few respond to additional
fertiliser.

4.3.3. Management implications
The yield function’s predicted responses can be assigned to three

main classes, each has a unique implication for management. Some
blocks show a high probability of exceeding the mean FFB, ABW or
BUNCH_HA function, even at the lowest RAINFALL.1 or
SUM_NPKMg_IN.1. Management will therefore have limited potential to
change the productivity of these high yielding blocks, and they will
provide predictably high yield under a diverse range of conditions. In
contrast, a different set of blocks showed a low probability of exceeding
the thresholds at even the highest RAINFALL.1 and SUM_NPKMg_IN.1
levels; these blocks will therefore be consistently low yielding. These
blocks will be highly resistant to improvement through management
unless the manager can identify impediments for such low yields. For
the remaining blocks, the probability of exceeding the yield threshold
responded to RAINFALL.1 levels and, for the FFB and ABW networks,
the SUM_NPKMg_IN.1 levels. Focussing management resources on these
blocks will bring the greatest production responses, especially when
matching SUM_NPKMg_IN.1 with RAINFALL.1.

5. Conclusions

This study has demonstrated that Bayesian networks based on data
collected during routine management of oil palm plantations can be
successfully trained to predict yield functions with a high degree of
precision. The resulting networks can be deployed to provide robust
predictions regarding the probability of achieving a specified yield
threshold following a given set of environmental parameters and
management strategies. Together with generalized predicted tools such
as PALMSIM, such machine-learning methods will provide a vital re-
source in aiding plantation managers to make rational and evidence-
based decisions when formulating strategic and process orientated
changes to management in response to emerging social, political and
environmental pressures within the oil palm industry. Furthermore, the
key finding that machine learning can extract value from complex da-
tasets will have broad potential for the fast emerging field of big data in
broader agricultural industries.
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Appendix

Tables A1–A3.

Table A1
Summary of coefficients from the FFB network for (a) parent nodes for the FFB variable; (b) parents of the SUM_NPKMg_IN.1 node
and; (c) parents of the TREEAGE node.

ESTATE ESTATE 1 ESTATE 2 ESTATE 3

A1.a
(Intercept) 33.8 −6.55 −15.4
RAINFALL −8.93E−03 −6.28E−03 −6.32E−03
RAINFALL.1 −3.47E−04 9.90E−03 1.50E−02
RAINFALL.2 −2.87E−04 1.71E−03 4.02E−03
FFB.1 31.0 53.5 14.0
FFB.2 32.4 18.7 34.1

A1.b
(Intercept) 574.3 745.5 367.3
TREEAGE −28.2 6.925 5.652
SUM_NPKMg_IN −0.033 −0.292 −0.136
RAINFALL.2 −0.004 −0.055 0.005
FFB 3.008 2.403 3.147
ABW.2 12.872 −7.347 2.686

A1.c
(Intercept) 17.703 7.189 0.51
RAINFALL −0.002 −6.0−E04 −4.95E−04
RAINFALL.1 −0.001 −1.0E−04 1.86E−03
RAINFALL.2 −0.001 −3.0E−04 2.48E−04
FFB 0.0432 0.004 −4.57E−04
FFB.1 −0.058 −0.031 −6.07E−03
ABW.1 0.156 0.158 0.17
ABW.2 0.225 0.289 0.226

Table A2
Summary of coefficients from the ABW network for (a) parent nodes for the ABW variable; (b) parents of the FFB.1 child; (c) parents
for the FFB.2 child node; (d) parents of the ABW.1 node; (e) parents of the ABW.2 node; (f) parents of the TREEAGE; (g) parents of the
SUM_NPKMg_IN.1 node; (h) parents of the BUNCH_HA.2 node; (i) parents of the RAINFALL node; (j) parents of the RAINFALL.1 node;
(k) parents of the RAINFALL.2 node.

ESTATE ESTATE 1 ESTATE 2 ESTATE 3

A2.a
(Intercept) 33.9 35.0 36.4
N.17.1 −8.858 −5.728 −9.017
SUM_NPKMg_IN 3.3E−03 −5.8E−03 5.0E−3

A2.b
(Intercept) 18.6 33.4 25.9
TREEAGE −1.405 −1.485 −0.650
ABW 0.066 −0.662 −1.481
ABW.1 1.409 0.431 1.580
ABW.2 −0.057 0.916 0.60

A2.c
Intercept −10.9 16.2 −6.753
RAINFALL 5.30E−03 2.77E−03 1.19E−02
RAINFALL.2 4.33E−04 1.02E−03 3.77E−03
FFB.1 8.01E−01 2.55E−01 1.39E+00
ABW 1.01 0.466 1.49
ABW.1 −1.96 −0.133 −4.13
ABW.2 1.38 −0.324 1.57
K.17.1 −2.05 −4.30 −0.0012
BUNCH_HA.1 −1.47E−03 −1.12E−03 −1.30E−02

A2.d
Intercept −4.089 4.923 8.698
SUM_NPKMg_IN 2.38E−04 −0.005 −0.008
ABW 0.892 0.94 0.902
N.17.1 1.396 −1.027 −1.93

(continued on next page)
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Table A2 (continued)

ESTATE ESTATE 1 ESTATE 2 ESTATE 3

A2.e
(Intercept) 0.31 5.535 4.77
RAINFALL.2 −8.2E−04 −0.001 −6.4E−04
ABW 0.076 0.258 0.073
ABW.1 0.766403 0.6925 0.657275
N.17.1 0.79569 −1.509 −0.653

A2.f
(Intercept) 7.023 5.461 4.436
SUM_NPKMg_IN −0.003 −0.001 −0.001
SUM_NPKMg_IN.1 −0.003 5.72E−04 −2.2−E04
RAINFALL.2 −1.3E−04 −5.2E−04 −2.0−E04
ABW 0.154 −0.069 0.111
ABW.1 0.122 0.263 0.209
ABW.2 0.181 0.276 0.121

A2.g
(Intercept) 443.9 776.1 411.3
SUM_NPKMg_IN 0.066 −0.295 −0.199
RAINFALL.2 −0.001 −0.041 0.013
ABW 1.830 −1.873 8.648

A2.h
(Intercept) 1.48E+03 3.45E+02 1.97E+03
RAINFALL −0.222 −4.96E−02 3.19E−04
RAINFALL.1 −8.74E−02 3.67E−02 −0.354
RAINFALL.2 −5.46E−02 8.65E−02 −8.01E−02
FFB.1 −59.0 −48.3 −49.9
FFB.2 117.0 67.6 84.9
ABW −2.96 −11.8 −23.0
ABW.1 122.2 90.2 135.6
ABW.2 −225.5 −122.8 −199.7
BUNCH_HA.1 0.688 0.822 0.639

A2.i
(Intercept) 770.6 906.5 1972.0
TREEAGE 17.355 −165.7 −52.8
SUM_NPKMg_IN 0.185 1.519 1.139
RAINFALL.2 −0.10 0.141 −0.047
ABW −107.4 95.03 28.5
ABW.1 −5.074 −100.6 −18.894
ABW.2 134.3 61.99 −17.979
N.17.1 718.7 460.0 155.7
K.17.1 −35.6 −401.0 −28.3

A2.j
(Intercept) 8617.5 1639.4 3611.79
TREEAGE −264.0 7.249 19.078
SUM_NPKMg_IN 0.727 0.038 0.188
SUM_NPKMg_IN.2 0.459 −0.019 −0.159
RAINFALL −1.495 0.282 −0.282
RAINFALL.2 −0.716 −0.059 −0.282
FFB.1 –23.2 –33.7 6.724
FFB.2 14.091 19.995 −1.179
ABW 44.7 −12.554 22.7
ABW.1 17.42 101.1 15.3
ABW.2 17.3 −70.2 −63.0
N.17.1 413.5 −100.6 50.8
K.17.1 −316.1 −110.1 15.4
BUNCH_HA.1 0.066 0.214 −0.130

A2.k
(Intercept) 5323.7 1221.9 3547.6
ABW −193.5 −177.0 −326.4
ABW.1 218.8 113.6 278.4
N.17.1 −204.8 811.6 275.6
K.17.1 −2171.1 427.8 −724.0
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Table A3
Summary of coefficients from the BUNCH_HA network for (a) parent nodes for the BUNCH_HA variable; (b) parents of the
BUNCH_HA.2 child node; (c) parents for the ABW.2 child node; (d) parents of the K.17.1 child node; (e) parents of the RAINFALL
child node; (f) parents of theRAINFALL.1 child node ; (g) parents of the RAINFALL.2 child node.

ESTATE ESTATE 1 ESTATE 2 ESTATE 3

A3.a
(Intercept) 82.12 378.60 2035.78
SUM_NPKMg_IN 0.02 −0.93 −1.92
FFB.1 −65.01 −32.90 −7.86
FFB.2 −7.64 18.19 9.72
ABW.1 92.83 32.51 −17.02
BUNCH_HA.1 1.15 0.88 0.44

A3.b
(Intercept) 397.1 197.7 555.4
RAINFALL.2 0.010 0.082 0.035
FFB.1 −63.7 −50.3 −51.0
FFB.2 113.5 65.8 82.8
ABW.1 145.4 86.4 103.7
ABW.2 −235.4 −122.8 −177.0
BUNCH_HA −0.034 0.069 0.074
BUNCH_HA.1 0.755 0.818 0.688

A3.c
(Intercept) 2.620 −2.494 −0.092
RAINFALL.2 −6.0E−04 −0.001 −6.7.E−04
FFB.1 −0.073 −0.150 −0.087
FFB.2 0.085 0.005 0.072
ABW.1 0.790 1.250 0.906
BUNCH_HA −4.9E−04 −0.002 −7.6E−04
BUNCH_HA.1 3.3E−04 0.004 0.001

A3.d
(Intercept) 1.05 1.275676279 1.212
SUM_NPKMg_IN −1.6E−04 −6.1E−04 −6.4E−04
BUNCH_HA −5.4E−05 −4.7E−05 −1.3E−0.5

A3.e.
(Intercept) 750.8 1006.5 1820.9
SUM_NPKMg_IN 0.055 1.512 0.803
SUM_NPKMg_IN.2 −0.419 −0.874 −0.019
RAINFALL.2 −0.066 0.197 −0.071
FFB.1 9.168 15.136 −2.739
FFB.2 43.3 33.0 −11.329
ABW.1 −76.7 −78.0 −1.852
N.17.1 975.8 464.6 135.9
K.17.1 199.2 −307.0 −73.7
BUNCH_HA −0.079 −0.319 −0.144
BUNCH_HA.2 −0.337 −0.162 0.269

A3.f
(Intercept) 9500.469 1674.4 3605.1
TREEAGE −246.2 5.196 24.0
SUM_NPKMg_IN 0.705 0.046 0.203
SUM_NPKMg_IN.2 0.448 −0.004 −0.091
RAINFALL −1.649 0.304 −0.204
RAINFALL.2 −0.748 −0.077 −0.297
FFB.1 −16.120 −23.4 −5.767
FFB.2 37.8 13.190 19.441
ABW.1 30.1 66.2 54.7
ABW.2 −11.423 −51.7 −99.9
N.17.1 438.5 −107.9 57.3
K.17.1 −389.2 −100.4 8.734
BUNCH_HA 0.030 0.143 0.052
BUNCH_HA.2 −0.188 0.059 −0.237

A3.g
(Intercept) 1085.1 −1048.6 −2004.6
SUM_NPKMg_IN.2 0.317 0.520 1.607
FFB.2 −38.5 1.025 −1.340
ABW.1 135.4 −1.334 73.1
N.17.1 496.5 755.0 449.2
K.17.1 −1749.7 496.6 −313.0
BUNCH_HA 0.571 0.574 1.013
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.compag.2018.06.006.
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