Characteristics of Tropical Lowland Peats

Introduction

Tropical peats like mineral soils of the tropics are quite different from temperate peats. Tropical peats are formed under quite different climatic and edaphic conditions compared to temperate peats. Temperate peats are mainly derived from the remains of low-growing plants (bryophytes *Sphagnum* spp. *Gramineae* and *Cyperaceae*). Tropical lowland peats, on the other hand, are formed from forest species and hence tend to have large amounts of undecomposed and partially decomposed logs, branches and other plant remains. Peat can attain a thickness of over 20.7 m as found in Loagan Bunut National Park (Melling et al., 2006) and consists mainly of organic substances with a high acidity (pH 3-4) and ash content of less than 5%.

Walking in these tropical lowland peat forests can be extremely hazardous as one’s feet hardly touch the ground per se. One has to carefully step on the aerial and buttress roots of the current vegetation which tend to form a dense interlocking root mat. Due to this difficulty of walking in these forests most people’s experiences of the tropical lowland peats are derived or based on what they observe at the edges of the swamp. Thus most people consider the tropical lowland peats to have a thick luxuriant forest with high biomass and to be continually waterlogged. Contrary to common beliefs tropical lowland peats are not uniform and are not always under water. These peat forests consist of a lateral variation of vegetation types resulting in a horizontal or lateral zonation of forest species and hence above ground biomass as one walks from the edge of the swamp to the centre. These peat swamps are dome-shaped – a fact that is not readily discernible in the field. When one examines a vertical profile morphology of the plant debris making up the forest base, a vertical layering of organic soil materials with different stages of decomposition and amount of wood or even layers of water can be seen. Thus tropical lowland peats exhibit both a horizontal zonation and vertical layering. Understanding of this zonation and vertical profile layering is critical for the conservation or utilization of these areas. Failure to recognize the structure and zonality of these forests can lead to wrong estimates of the biomass, biodiversity and the role of these forests as a sink or source of greenhouse gas emissions.

Horizontal Zonality of Tropical Lowland Peats

Buwalda (1940), working in Sumatra, was probably the first to report that different plant communities exist in the peat swamp forest depending on the thickness of the peat and the distance from the river. Where the peat is more than three metres thick, he reported that vegetation is poorer than that at the shallow depths. On very thick peat deposits, *Myrtaceae*...
and Calophyllum species with tall slender trunks growing close to one another dominate. In the central or inner parts of the forest, the thickest layers show a more open vegetation with poorly developed, twisted and stunted trees and scattered pools containing deep brown water with a pH of 3.0 to 3.5. This Myrtaceae-Calophyllum forest is rich in Nepenthaceae whilst mosses, ferns and Cyperaceae cover the soils. On peat deposits shallower than three metres deep, the undergrowth consists of Araceae, Commelinaceae, Palmae (Zalacca conifera, Licula) and ferns. The soils have a pH of 3.5 to 4.5. Based on these studies in the Indragiri Area, Buwalsa (1940) reported six different vegetation types with the dominance of one or more species. Anderson (1961, 1963, 1964) working on Borneo Island (Sarawak and Brunei) described a similar situation.

Ecology of the Tropical Lowland Peat Swamp Forests

In spite of the work of Buwalsa (1940) little was known about the ecology of the Peat Swamp Forests in Southeast Asia. Perhaps the most comprehensive and best known study of the ecology of the Tropical Lowland Peat Swamp Forest was carried out by Anderson over a period of ten years in the 1950s (Anderson, 1961, 1963, 1983). Anderson recorded 253 tree species (including 40 small trees which rarely exceeded 10 m in height in the Tropical Lowland Peat Swamp Forest. Many of these species recorded by Anderson are also found in other forest types outside peat swamp forest. It is also significant to point out that many of the species which are largely confined to the periphery of the Tropical Lowland Peat Swamp Forest also occur in the Lowland Dipterocarp Forest. On the other hand, the species that are present in the forests located in the centre of the swamps are mainly those that are found on the poorer soils, frequently podzols of the heath forest (Anderson, 1963).

The Tropical Lowland Peat Swamp Forests show conspicuous changes in vegetation types from its periphery to the centre of each dome-shaped peat swamp (Buwalsa, 1940; Anderson 1961). Anderson who studied these swamps in Sarawak, Malaysia and adjacent Brunei on the island of Borneo had used the term "Phasic Community" (PC) to designate a dominant vegetation zone. Anderson recognized six distinct Phasic Communities or zones on the basis of their floristic composition and structure of the vegetation in each zone (Table 3.1 and Figures 3.1 and 3.2). They were numbered PC1 at the periphery to PC6 in the centre of the Peat Swamp. The main changes that characterize these concentric zonations which are fairly easily seen on aerial photographs have been summarized by Tie (1990) as follows:-

a) An almost complete change in the floristic composition from one zone to another was evident. Dactylocladus steinostachys is the only tree species found in all six zones. Amongst the ground flora, only the sedge Thorachostachyum bancanum has a similar distribution.

b) There was reduction in the number of tree species per unit area and total number of species recorded from the edge to the centre. In sample plots of 0.2 ha, PC1 and 2 have 30-35 tree species (>30 cm girth), PC3 and 4 have about 12-25 species and finally in PC6 less than 5 species occur.

c) A general increase in the number of stems (> 30 cm girth) per unit area was evident. In PC1, it varies between 600-700 trees per ha, whereas in PC4, 650-850 stems usually occur and in the low dense forest of PC5, the number increases to 1,200-1,350 trees per ha. PC3 is the exception with only 350-600 stems per ha. In the open, stunted forest of PC6, very few stems of more than 30 cm girth are found.
close to one another dominate. In general, below a more open vegetation with herbaceous and shrubby species, peat pools containing deep brown water can be seen. The forest is rich in *Nepenthaceae* species, with many species found in peat deposits shallower than three meters. A few species such as *Borassaceae*, *Palmae* (*Zalacca* spp.) and *Meliaceae* have been recorded. Based on these studies in the distribution of vegetation types with the dominance of species, the peat bog forest is highly diverse and rich in species.

Chapter 3

Peat Forests

More information about the ecology of the Peat Forest is known. The comprehensive and best known study of peat forests was carried out by Anderson (1963, 1983). Anderson recorded trees that exceeded 10 m in height in the forest. The trees recorded by Anderson are the dominant species. It is also significant to point out that the vegetation in the periphery of the Tropical Lowland Peat Forest. On the other hand, the swamps are mainly those of the peat swamp forest (Anderson, 1963).

The most important changes in vegetation occur in the peat swamp (Buwalda, 1940; Anderson, 1963; Anderson, 1983). A "Peat Forest Community" (PC) to designate a number of forest communities or zones of the vegetation in each zone. The vegetation in PC1 at the periphery to PC6 in the open, stunted forest. The concentric zones have been summarized by Tie (1990) as follows:

- PC1: 0.2-25 species found in all six zones.
- PC2: *Borassaceae* and *Meliaceae* have a similar species of each zone.
- PC3: 1-100 species per area and total number of stems per area; plots of 0.2 ha, PC1 and 2 have about 12-25 species and finally in PC4, 650-850 stems usually occur. While in PC3, trees per area in PC4 increases to 1,200-1,350 trees per area. In the open, stunted forest of PC6, 60-120 cm girth is common.

![Figure 3.1. Lateral zonation of vegetation in the six phasic communities (after Anderson, 1961)](image-url)
Examples of Forest Types

- Mixed Peat Swamp Forest (PC-1)
- Alan Batu Forest (PC-2)
- Alan Bunga Forest (PC-3)
- Padang Alan Forest – Shorea Albida (PC-4)
- Tristania-Parastemon-Palaquium Forest (PC-5)
- Padang Raya Forest (PC-6)

Figure 3.2. Examples of peat swamp forest types [Source: Hazebroek, H.P. and Abang Kashim Ab. M. 2001 (PC-1); Adrian Wong (PC-2, PC-3); Uyo et al., 2010 (Shorea Albida – PC-4); Chua, K.H. (PC-5); Hazebroek, H.P. and Abang Kashim Ab. M. 2006 (PC-6)]
Characteristics of Tropical Lowland Peats

Table 3.1: Characteristics of the Six Phasic Communities (PC)

<table>
<thead>
<tr>
<th>PC</th>
<th>Name</th>
<th>Upper story Main tree species</th>
<th>Middle-undertory Main tree species</th>
<th>Other features of trees and ground flora</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goydosbyllo-Drypetes-Neolischnia Association (MPF)</td>
<td>Goydosbyllo boocorn (Ramli, Dactyloclados strangulatus)</td>
<td>Nannostachys kiingii</td>
<td>Structure and physiophenology similar to MPF: on mature soil, sandy loam species with pneumatophores, stil roots and buttresses: Zuccora lilia, Batu Myriophyllum spicatum, Alocasia sp., Pseudobulbifera sp.</td>
<td>Established in upper-Sangates and Boreruwates, particularly in central lowland areas, especially in the Selaya Bora river.</td>
</tr>
<tr>
<td>2</td>
<td>Shorea albida Association (Alam Batu Forest) (ASU)</td>
<td>Shorea albida</td>
<td>Shorea albida</td>
<td>Structure and physiophenology similar to ASU: on mature soil, sandy loam species with pneumatophores, stil roots and buttresses: Zuccora lilia, Batu Myriophyllum spicatum, Alocasia sp., Pseudobulbifera sp.</td>
<td>Established in upper-Sangates and Boreruwates, particularly in central lowland areas, especially in the Selaya Bora river.</td>
</tr>
<tr>
<td>3</td>
<td>Hedyosmum-Drypetes-Vaccinium Association (VPA)</td>
<td>Hedyosmum sp.</td>
<td>Hedyosmum sp.</td>
<td>Structure and physiophenology similar to VPA: on mature soil, sandy loam species with pneumatophores, stil roots and buttresses: Zuccora lilia, Batu Myriophyllum spicatum, Alocasia sp., Pseudobulbifera sp.</td>
<td>Established in upper-Sangates and Boreruwates, particularly in central lowland areas, especially in the Selaya Bora river.</td>
</tr>
<tr>
<td>4</td>
<td>Trichilia-Paraseriopsis-Camellia Association (CPC)</td>
<td>Trichilia sp.</td>
<td>Paraseriopsis sp.</td>
<td>Structure and physiophenology similar to CPC: on mature soil, sandy loam species with pneumatophores, stil roots and buttresses: Zuccora lilia, Batu Myriophyllum spicatum, Alocasia sp., Pseudobulbifera sp.</td>
<td>Established in upper-Sangates and Boreruwates, particularly in central lowland areas, especially in the Selaya Bora river.</td>
</tr>
<tr>
<td>5</td>
<td>Shorea albida Association (Alam Batu Forest) (ASU)</td>
<td>Shorea albida</td>
<td>Shorea albida</td>
<td>Structure and physiophenology similar to ASU: on mature soil, sandy loam species with pneumatophores, stil roots and buttresses: Zuccora lilia, Batu Myriophyllum spicatum, Alocasia sp., Pseudobulbifera sp.</td>
<td>Established in upper-Sangates and Boreruwates, particularly in central lowland areas, especially in the Selaya Bora river.</td>
</tr>
<tr>
<td>6</td>
<td>Pterocarpus-Drypetes-Neulisinae Association (PND)</td>
<td>Pterocarpus sp.</td>
<td>Neulisinae sp.</td>
<td>Structure and physiophenology similar to PND: on mature soil, sandy loam species with pneumatophores, stil roots and buttresses: Zuccora lilia, Batu Myriophyllum spicatum, Alocasia sp., Pseudobulbifera sp.</td>
<td>Established in upper-Sangates and Boreruwates, particularly in central lowland areas, especially in the Selaya Bora river.</td>
</tr>
</tbody>
</table>

Description of Peat Types
- **Shorea Albida (PC-4):** This species with 30 cm girth or larger. The peat is characterized by a high density of pneumatophores and a thick layer of peat. The peat is rich in nutrients and supports a diverse flora and fauna. The peat is often found in swamps and lowland areas. The peat is rich in nutrients and supports a diverse flora and fauna. The peat is often found in swamps and lowland areas.

Literature Cited
Structure and Development of the Tropical Lowland Peat Swamps

Anderson (1961) also studied the structure of the peat swamps in Sarawak by means of level surveys and borings to the substratum. There is a general rise in elevation in a convex form from the river or coast to the centre of peat swamp. The absolute rise and the convexity at the periphery become more pronounced with distance from the sea. The maximum elevation of 20.7 m above mean sea level was recorded at Loagan Bunut National Park, Sarawak (Melling et al., 2006) while the most pronounced convexity of the swamp surface was observed at Tanjung Pasir swamp near Marudi (Figure 3.3). The central raised part of the peat swamp is almost flat with a rise of less than half a metre per kilometer. With the rise in surface elevation, there is sometimes a corresponding fall in the level of the basal mineral materials, usually clays or silty clays, from the river-bank or coast into the swamp centre. This often gives the peat deposit a lenticular or discoidal cross-section.

Groundwater flow in the peat swamp is apparently confined to the top 1-2 m. The presence of well preserved woody material in the peat deposit below the surface indicates cessation of decomposition and suggests complete stagnation of sub-surface water. Layers of water as thick as 30 cm can sometimes occur within the peats.

Hydrology of Tropical Lowland Peat Swamps

The present author hypothesizes that the peat basin is actually a 'confined basin' with higher land consisting of levees on two edges, coastal ridges or coastal plain on the seaward site and hills on the landward side. Thus all the water which is already inside the swamp and that which is added on by rains cannot get out until it overflows the levees in periods of very heavy rainfall. In normal rainfall situations the rainwater that is still confined inside the swamp will exert an upward pressure causing the dome to form (Figure 3.4). The heavier the rainfall, and addition of water from the hills, the greater the pressure build-up causing the dome to become more convex inland compared to domes nearer the coast.

Peat Types and Profile Morphology

Peat characteristics within a peat swamp vary according to its position. Generally most chemical properties such as exchangeable cations, and pH decrease from the edge of the swamp to the centre of the dome. Similarly when one examines the vertical profile morphology of the peat dome a distinct peat profile structure can be seen (Figure 3.5). The organic soil materials making up the profile often change from highly decomposed sapric material in the surface through a partly decomposed hemic material to an undecomposed fibric material at depth. This change corresponds to a decrease in bulk density with depth. Water-filled pores often also thus increase with depth. Logs (Figure 3.6), twigs and branches can occur at any depth within the profile. Hydric (water layers) (Figure 3.7) also can occur within the profile. Thus the types of profile morphology not only varies from one peat swamp to another but also between different locations within an individual peat swamp. Illuviated carbon or humiclic carbon (Figure 3.8) often occurs as a layer at the interface between the organic materials and the mineral substratum.
CHAPTER 3
Characteristics of Tropical Lowland Peats

Lowland Peat Swamps

Swamps in Sarawak by means of level change in elevation in a convex form due to absolute rise and the convexity of the swamp surface from the sea. The maximum Loagan Bunut National Park, convexity of the swamp surface Figure 3.3). The central raised part of the level of the basal mineral soil to the top 1-2 m. The surface indicates cessation of surface water. Layers of water Figure 3.4). The heavier the pressure build-up causing the nearer the coast.

Figure 3.3. Surface morphology of peat domes (after Tie, 1990)

Figure 3.4. Hydrology of peat swamps (Source: Peramanathan, 2008b)
Figure 3.5. Vertical profile morphology of a peat swamp (Source: Paramanantham, 2008b)
Current Environmental Issues on Peat Development

Due to its very fragile nature any development or disturbance of the peatlands is expected to change the natural ecological balance. Thus many environmental issues ranging from the loss of biodiversity and habitats to loss of above ground biomass can be expected. Loss of carbon in the subsurface by decomposition can also take place. These, it is claimed will contribute to greenhouse gas emissions and global warming. How much of these statements are facts and how much of these are just estimates will be covered in the subsequent chapters.
HYDRIC LAYER (VACANT LAYER)

Layer of water in peat profile

Figure 3.7. Hydric layer in tropical lowland peat (vacant part was water) (Source: Paramananthan, 2006b; Ilyo et al., 2013)

HUMULUVIC MATERIALS

Figure 3.8. Humuluvic carbon at the organic soil material/mineral soil material interface (Source: Paramananthan, 2013b)