IPNI Southeast Asia Program

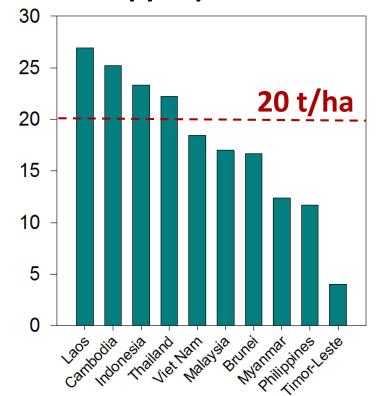
Fertilizer recommendation method to support sustainable cassava intensification

Mirasol F. Pampolino, Apolonio Ocampo, Lovely Luar, Thomas Oberthür

IPNC 2017, Copenhagen, 24 Aug 2017

The importance of cassava

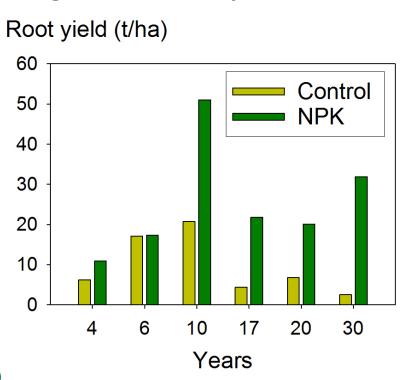
"The capacity of cassava to adapt to soils of marginal fertility and uncertain rainfall, as well as its capacity to provide income and thereby alleviate poverty, are the principal attributes that allow this crop to play a catalytic role for rural development ..."

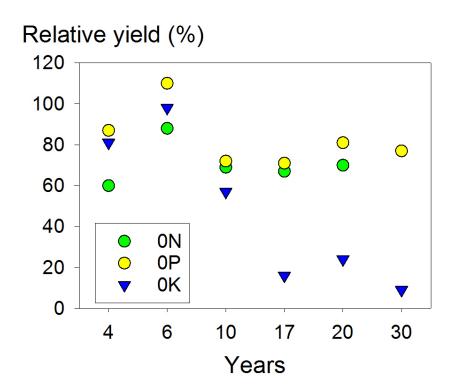

Mahmud Duwayri FAO, 2001

Cassava production (2014)

Region	Area (M ha)	Production (M ton)	Yield (t/ha)
World	24	268	11.2
Africa	17	146	8.4
America	2.4	32	13.3
Asia	4.1	90	21.9

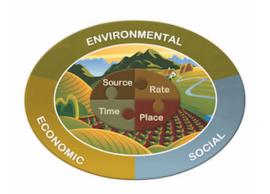
Yield (t/ha) in SE Asia




Data source: FAOSTAT, 2017

Cassava response to fertilizer

Long-term fertility trials, SE Asia


PLANT NUTRITION

Adapted from: Howeler, 2014

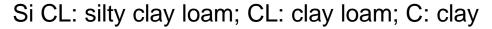
4R Nutrient Stewardship

Applying the right source of plant nutrients at the right rate, at the right time, and in the right place

can support sustainable cassava intensification

Study Objective

To collect agronomic parameters required in developing a fertilizer recommendation method based on the principles of 4R.



Site characteristics

Philippines: 2014-2016

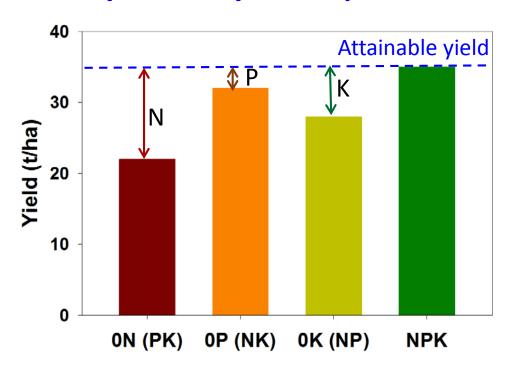
Site	Texture	pH (1:1 H ₂ O)	SOM (%)	Avail. P (mg/kg)	Exch. K (cmol/kg)
1	Si CL	5.5	2.0	8	0.4
2	CL	5.7	2.9	23	2.5
3	CL	5.9	3.2	23	4.1
4	CL	5.5	1.9	6	0.3
5	CL	5.4	2.3	5	0.4
6	С	4.9	5.4	7	0.2

Experiment design and treatments

Design: Split plot

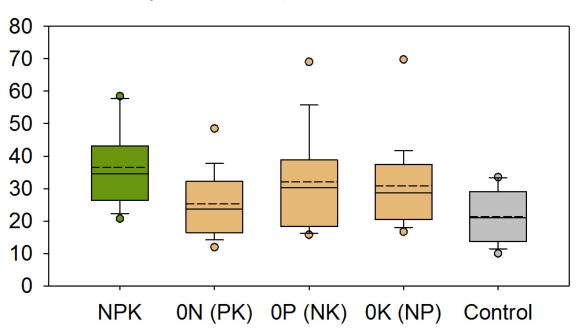
Main plot (2-3): Variety

Subplot (7): Fertilizer rate


Replication: 3-4

Treatment	Fertilizer rate (N-P ₂ O ₅ -K ₂ O) kg/ha
1) Full NPK	200 - 100 - 350
2) ON (PK)	0 - 100 - 350
3) OP (NK)	200 - 0 - 350
4) OK (NP)	200 - 100 - 0
5) 4R*	180 – 70 – 250
6) NFR	56 – 56 – 56
7) Control	0 - 0 - 0

The 4R fertilizer rate


Based on attainable yield and yield response to fertilizer nutrients

Cassava attainable yield and yield response to fertilizer

Fresh root yield (t/ha)

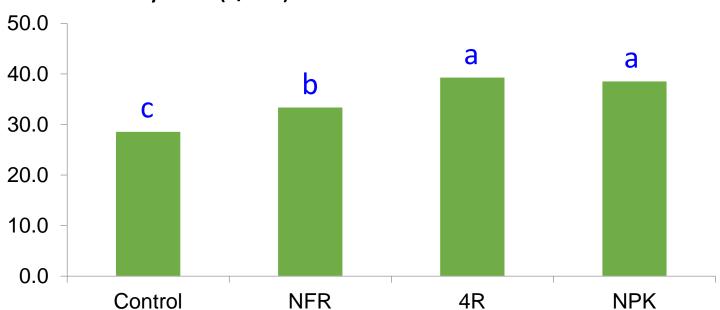
Varieties = 10 Sites = 6

n = 19

Attainable yield:

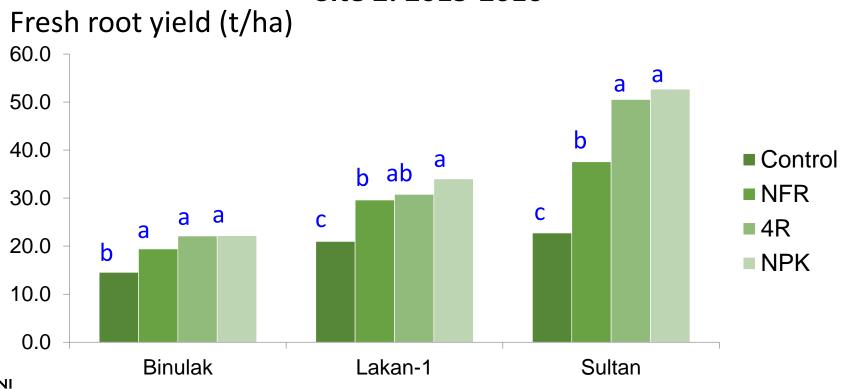
20-58 t/ha

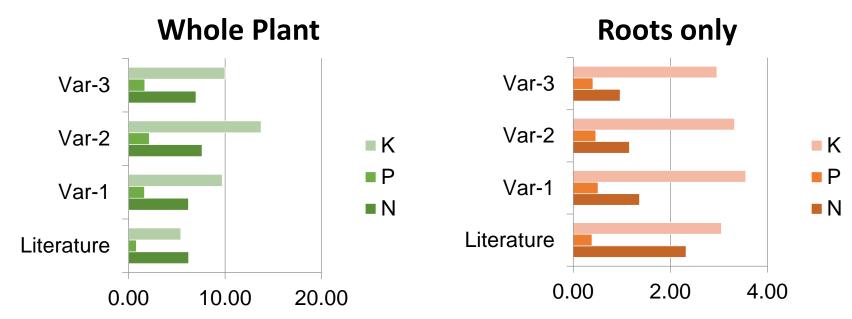
Yield response:


N > K > P

Effect of fertilizer treatment on root yield

Site 1: 2015, 3 varieties


Fresh root yield (t/ha)



Effect of fertilizer treatment on root yield

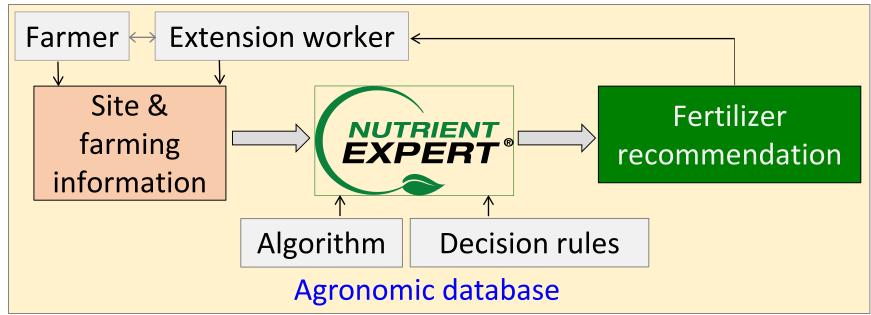
Nutrient removal – whole plant vs. roots

Nutrient removed (kg) per ton fresh root yield

WP: 7 N, 2 P, 11 K (kg/ton)

R: 1.2 N, 0.5 P, 3.2 K (kg/ton)

Literature value: Howeler, 2014


Summary

- Cassava attainable yields and yield response to N, P, and K application vary across locations and varieties.
- Cassava requires large amount of nutrients to produce high yields.
- A fertilizer recommendation method based on 4R principles will help farmers improve their yields and sustain productivity of their fields.

Future outlook

Nutrient Expert® for Cassava will provide 4R-based fertilizer recommendations tailored to individual fields

IPNI Southeast Asia Program

Fertilizer recommendation method to support sustainable cassava intensification

Mirasol F. Pampolino, Email: mpampolino@ipni.net