BMP and Fertilizer
Use
Efficiency

Chris Donough
IPNI Southeast Asia

Profitable, Eco-efficient Oil Palm

BMP and Fertilizer
Use
Efficiency

Rapid expansion in planted area – driven by SE Asia

BMP and Fertilizer Use Efficiency

Oil palm BMPs

- 1 century of commercial cultivation
- Decades of field experimentation → summarized in good books
- Visit http://www.ipni.net/publications
 to browse or download catalogue

Yield increase at commercial scale with better practices

BMP and Fertilizer
Use
Efficiency

Stagnant yield – since 1990s

BMP and Fertilizer
Use
Efficiency

Sub-optimal BMPs → Yield Gaps

BMP and Fertilizer
Use
Efficiency

Better BMP implementation

→ Better Yield: Indonesia

BMP and Fertilizer
Use
Efficiency

Oil palm needs fertilizers

- High fruit bunch (FFB) yield → removes nutrients from fields
- Nutrients needed for palm growth
- Low soil fertility → insufficient to meet crop demand
- Recycling of nutrients (post-mill)
 - → insufficient for all cropped areas
 - → insufficient for all crop needs

Nutrient BMPs based on 4R principles

Nutrient content in tenera FFB

BMP and Fertilizer
Use
Efficiency

Field trials: Yield response to fertilizers

- Malaya: Commercial cultivation since 1911
- Many field trials since post-WW2, many results presented
- Example:

	FFB field (t fia -) larmizi		i et ai (1992)
Soil type	<u>Control</u>	<u>Maximum</u>	<u>Response</u>
Inceptisol	18 - 34	24 - 36	1-9%
Ultisol	9 – 28	26 - 37	5 – 24 %
Oxisol	12 - 26	28 - 35	2 – 23 %

FFD Viold /+ ha-1\ Tarresini at al /10021

Field trials: Yield response to fertilizers

- Sabah: Commercial cultivation started 1958
- Less field trials, fewer results reported
- Jabatan Pertanian Sabah Betty Kwan
- Sawit Kinabalu Boris & Hoong
- FELDA Foong et al

Weakness in info base

BMP and Fertilizer
Use
Efficiency

Fertilizing margin narrowing

BMP and Fertilizer
Use
Efficiency

Labour & logistics

BMP and Fertilizer Use Efficiency

"New Business Model"

BMP and Fertilizer
Use
Efficiency

Plantation Intelligence

Fertilizer Use Efficiency (FUE)

- Kg Yield per Kg Fertilizer applied
- In commercial practice, 'cost' is a key issue
- Use FUE as performance indicator?

FUE → a new KPI

Apparent FUE → Actual Yield (kg) per kg fertilizer applied in last 3 years

Break-even FUE → based on FFB price & cost of fertilizer applied

Yield Taking & Yield Making BMPs in Mature Oil Palm

	Chop hosonom;	Canany	Mutriont
	Crop recovery	Canopy management	Nutrient management
Yield making			
Yield taking			

BMP and Fertilizer
Use
Efficiency

Options from analysis

- Focus fertilizers → responsive soils
- Reduce yield expectation in poorer areas
- Manage labour

 maximize benefits from fertilizer

Thanks to Seminar Organizers

& Thank You All for Listening

